VISUAL RATING AND VOLUMETRY OF HIPPOCAMPUUS ON MAGNETIC RESONANCE IMAGING IN ALZHEIMER DISEASE

A. Bartos¹,², P. Zach³, I. Ibrahim⁴, D. Ripova¹

¹ AD Center, Psychiatric Prague Center, Prague, Czech Republic; ² Charles University in Prague, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic; ³ Charles University in Prague, Third Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic; ⁴ Department of Radiology, Institute for Clinical and Experimental Medicine, Czech Republic

BACKGROUND AND AIMS

The new proposal of revised diagnostic criteria for Alzheimer disease (AD) is based on early and significant episodic memory impairment. It should be supported by at least one or more abnormal biomarkers among structural neuroimaging with magnetic resonance imaging (MRI), molecular neuroimaging with PET and cerebrospinal fluid analysis of amyloid-beta or tau proteins. The volume loss of hippocampus, entorhinal cortex, amygdala on MRI is common in AD (71-96 %, depending on disease severity) and can be measured with qualitative ratings using visual scoring or quantitative volumetry of regions of interest.

METHODS

In 20 patients with probable Alzheimer disease and 29 cognitively normal elderly medial temporal lobe atrophy (MTA) was measured by volumetry using manual tracing of the hippocampus. The volume of the hippocampus was also rated into five categories expressed as MTA scores ranging from 0 (no atrophy) to 4 (severe atrophy) (fig. 1) using a simple and quick semiquantitative method according to the published combined widths or the height of selected three mediotemporal structures (fig. 2).

Fig. 1 Representative magnetic resonance images showing medial temporal atrophy ratings. See fig. 2 for complete descriptions of the ratings.

RESULTS

In comparison to controls, AD patients had significantly smaller volume of either hippocampus (median volume of the hippocampus 3 in cm³):

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Alzheimer disease</th>
<th>p</th>
<th>figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right hippocampus</td>
<td>2.23</td>
<td>1.81</td>
<td>0.001</td>
<td>3</td>
</tr>
<tr>
<td>Left hippocampus</td>
<td>2.14</td>
<td>1.6</td>
<td>0.003</td>
<td>4</td>
</tr>
<tr>
<td>Both hippocampi</td>
<td>4.31</td>
<td>3.40</td>
<td>0.0004</td>
<td>5</td>
</tr>
</tbody>
</table>

The total MTA score of both sides were significantly higher in AD patients (median 4) than that in controls (median 1) (p=0.0004). Nearly 60 % cognitively normal seniors had the MTA score ≥ 0.5. A similar proportion of patients with AD (65 %) had the MTA score ≥ 2 (fig. 6, 7).

CONCLUSION

Atrophy of medial temporal structures can be detected by visual rating and volumetry on MRI in patients with AD. Visual MTA rating is the easier and quicker method than more accurate and time consuming volumetry to support the diagnosis of AD on the brain MR imaging.

The project was supported by CNS MSMT 1M0517 and VZ MZČR MZ0PCP2005.